二、摆正三个关系,力求教学具有较高质量

二、摆正三个关系,力求教学具有较高质量

12-20 17:47:04  浏览次数:269次  栏目:数学教学反思

把握。

  我又让他们计算一下,证明这些数都能被3整除,他们兴奋极了。

  过了一会儿,我问他们:“这是为什么?”他们沉思着。

  我指着黑板上的两组数,让他们观察一下,各有什么特点。

  他们发现,每一组里的数,都是由三个同样的数字组成的,不管怎样变化,这三个数字始终不变。

  我又问:“组成这些数的数字不变,仅仅是数字在排列上有变化。那你们还能进一步发现有什么特点?”

  学生们想了一下,他们真的发现了这些数各个数位上的数相加的和,不会变。

  我又引导他们去计算一下各个数位上的数的和。

  计算的结果一组是6,另一组是12。有的学生高兴得一下子站起来了,他们已经发现其中的奥妙了。

  我又回到他们原来说过的27,有的学生不等发问,就说:“72也能被3整除。”

  我问他们:“这是为什么?”

  他们说:“7加2,2加7,全是9。”

  结论得出来了,他们沉浸在靠自己取得成功的欢乐之中。

(二)处理好过程和结果的关系

  毛主席早就指出,要实行启发式,反对注入式。我认为是启发,还是注入,关键就在于处理好过程和结果的关系。

  所谓过程,也就是操作的过程,观察的过程,比较的过程,分析的过程,综合的过程等。所谓结果,主要是指抽象、概括出的结论。

  过程和结果之间的关系,首先是“结果”以“过程”为基础,其次是“过程”以“结果”为目的。它们之间应当像瓜熟蒂落,水到渠成,是认识上的自然升华。

  但是,在教学实践中,比较普遍地存在着只重结果,不重过程的倾向。在作业的批改中也反映出这种倾向,注重的也是结果,对于思路、策略往往重视不足。

  我曾做过一次调查,让一年级的学生计算4+3这道题,他们几乎都做对了。我又把他们找来,一个一个地询问,由他们说出是怎样想,才得出7的。

  分析学生的回答,大致可以分为四个层次。

  最好的是概念水平。他们以数的组成为基础,说:“4和3可以组成7。所以4加3等于7。”

  其次是表象水平。他们以吃苹果吃糖等为例,进行思考。譬如说:“上午我吃了4块糖,下午我吃了3块糖,一天就吃了7块。”

  再有是半直观水平。他们伸出一只手的手指头,然后就说出5、6、7,这样数出结果。

  最后一种是全直观水平。两只手都伸出来,一只手伸出4个手指头,另一只手伸出3个手指头,从头数到尾,总算也得出了7。

  这项调查,生动地说明,质量的含义应当是,采用最佳策略,获得正确结果。显然,忽视过程,忽视策略,决不是正确的态度。

  为了处理好过程和结果的关系,在教学求最大公约数时,我是这样做的。

  第一步,先把一个数分解质因数,然后要求学生根据这个分解质因数的式子,说出这个数中除去1以外的全部约数。

  例如,12=2×2×3。

  学生能够说出12的约数除去1以外,还有2、3、4、6、12。

  第二步,再把另一个数分解质因数,然后仍然要求学生根据这个分解质因数的式子,说出这个数中除去1以外的全部约数。

  例如,18=2×3×3。

  学生能够说出18的约数除去1以外,还有2、3、6、9、18。

  第三步,把两个式子中公有的质因数2圈起来。

  500)this.style.width=500;" >

  然后问学生:“12有质因数2,18也有质因数2,这说明什么?”

  学生指出:“这说明12和18都有公约数2。”

  我再把12和18公有的质因数3圈起来。

  500)this.style.width=500;" >

  然后问学生:“12还有质因数3,18也还有质因数3,这又能说明什么?”

  学生回答:“这说明12和18还有公约数3和公约数6。”

  我又问:“12和18的最大公约数是几?”

  学生回答是6。

  我又引导他们观察,这个6是怎么得到的,结果学生发现,它是全部公有质因数的积。

(三)处理好知识和能力的关系

  人的认识总是要经历两次转化的,毛主席把它称之为两次飞跃。第一次,是由感性认识到理性认识的转化;第二次,是由理性认识到实践的转化。一些数学教师对于认识上的第一次转化,是比较重视的,但对于第二次转化的重视程度有时显得不够。

  对于数学教学来说,实现认识上的第二次转化,主要是通过练习。老师们天天布置作业,怎么还能说重视不够呢?实现第二次转化主要靠练习,但练习不一定就能实现第二次转化。这要看我们练什么,怎么练。假如模仿性太强,假如大有“请你照我这样做”的味道,就是练的再多,也不一定有多么大的意义。

  我认为,为了促成认识上第二次转化的练习,应具备两个条件,第一是不超纲,不超教材,即运用已学过的基础知识,完全可以解决。第二是没有现成的模式,需要学生独立思考。

  例如,有一次我把一个土豆带进了课堂,请学生计算一下它的体积。

  起初,学生们都愣住了,纷纷议论起来。有的说老师没教过求这样物体的计算公式,有的说就是有公式也不成,因为这个土豆的形状太不规则了。

  我承认没有什么直接的办法,但仍坚持由学生开动脑筋。

  过了一会儿,有个学生发言了。他说:“您把这个土豆让我带回家,我把它蒸一下,它就变软了。这样我就可以拍一拍,挤一挤,使它成为长方体。这样就能计算了。”

  我指出他的想法很有意义,这是改变物体形状而不改变物体的体积。

  又过了一会儿,有个学生又站起来了。他说:“您给我一个天平,我先来称一称这个土豆的重量。然后我在土豆上切下1立方厘米这么一小块,也去称一称它的重量。我想这个土豆的重量是这一小块重量的多少倍,这个土豆的体积就是1立方厘米的多少倍。”

  我说:“你是根据同一种物质,它的体积与重量成正比例来解决问题的。我相信,以后学习比和比例时,你会更出色。”

  第三个学生又发言了:“您给我一个容器,譬如是个圆柱体形状的。我先量一下它的底面直径,这样我就能算出它的底面积。然后就往里面倒水,再量一量水的深度,就能算出水的体积。把土豆放进水中,再量一量现在水的深度,又能算出一个体积来。两次体积的差,就是土豆的体积。”

  这节课上得特别活跃,不少基础知识得到了进一步巩固,得到了更深刻的理解。更重要的是训练了思维,培养了能力。

  还有一次,我问学生:“你们都有尺子吗?”学

www.nx899.com

生一边举起手中的尺子,一边说:“这不是尺子吗?”

  我又问:“你们知道尺子有什么用吗?”

  学生说:“尺子可以度量物体的长短。”

  我立即拿出一张纸,把它交给了一个学生,请他量一量这张纸有多长。他很快就量好了。

  我又对他说:“请你再量一量这张纸有多宽。”他又很快量好了。

  我还对他说:“请你再量一量这张纸有多厚。”

上一页  [1] [2] [3]  下一页

,二、摆正三个关系,力求教学具有较高质量

《二、摆正三个关系,力求教学具有较高质量》相关文章

tag: 教学   数学教学反思,数学教学反思范文,教学反思案例,教学反思 - 数学教学反思

Copyright © 能学网 Corporation, All Rights Reserved

1 2 3 4 a b c 5 6 7 8