不等式的证明(三)

不等式的证明(三)

12-20 17:39:02  浏览次数:100次  栏目:高二数学教案

不等式的证明(三)

第四课时

教学目标

  1.掌握分析法证明不等式;

  2.理解分析法实质——执果索因;

  3.提高证明不等式证法灵活性.

教学重点  分析法

教学难点  分析法实质的理解

教学方法  启发引导式

教学活动

  (一)导入新课

  (教师活动)教师提出问题,待学生回答和思考后点评.

  (学生活动)回答和思考教师提出的问题.

  [问题1]我们已经学习了哪几种不等式的证明方法?什么是比较法?什么是综合法?

  [问题 2]能否用比较法或综合法证明不等式:

  [点评]在证明不等式时,若用比较法或综合法难以下手时,可采用另一种证明方法:分析法.(板书课题)

  设计意图:复习已学证明不等式的方法.指出用比较法和综合法证明不等式的不足之处,

激发学生学习新的证明不等式知识的积极性,导入本节课学习内容:用分析法证明不等式.

  (二)新课讲授

  【尝试探索、建立新知】

  (教师活动)教师讲解综合法证明不等式的逻辑关系,然后提出问题供学生研究,并点评.帮助学生建立分析法证明不等式的知识体系.投影分析法证明不等式的概念.

  (学生活动)与教师一道分析综合法的逻辑关系,在教师启发、引导下尝试探索,构建新知.

  [讲解]综合法证明不等式的逻辑关系:以已知条件中的不等式或基本不等式作为结论,逐步寻找它成立的必要条件,直到必要条件就是要证明的不等式.

  [问题1]我们能不能用同样的思考问题的方式,把要证明的不等式作为结论,逐步去寻找它成立的充分条件呢?

  [问题2]当我们寻找的充分条件已经是成立的不等式时,说明了什么呢?

  [问题3]说明要证明的不等式成立的理由是什么呢?

  [点评]从要证明的结论入手,逆求使它成立的充分条件,直到充分条件显然成立为止,从而得出要证明的结论成立.就是分析法的逻辑关系.

  [投影]分析法证明不等式的概念.(见课本)

  设计意图:对比综合法的逻辑关系,教师层层设置问题,激发学生积极思考、研究.建立新的知识;分析法证明不等式.培养学习创新意识.

  【例题示范、学会应用】

  (教师活动)教师板书或投影例题,引导学生研究问题,构思证题方法,学会用分析法证明不等式,并点评用分析法证明不等式必须注意的问题.

  (学生活动)学生在教师引导下,研究问题,与教师一道完成问题的论证.

  例1 求证

  [分析]此题用比较法和综合法都很难入手,应考虑用分析法.

  证明:(见课本)

  [点评]证明某些含有根式的不等式时,用综合法比较困难.此例中,我们很难想到从“ ”入手,因此,在不等式的证明中,分析法占有重要的位置,我们常用分析法探索证明途径,然后用综合法的形式写出证明过程,这是解决数学问题的一种重要思维方法,事实上,有些综合法的表述正是建立在分析法思索的基础上,分析法的优越性正体现在此.

  例2 已知: ,求证: (用分析法)请思考下列证法有没有错误?若有错误,错在何处?

  [投影]证法一:因为 ,所以 、去分母,化为 ,就是 .由已知 成立,所以求证的不等式成立.

  证法二:欲证 ,因为

            只需证

            即证

            即证

  因为 成立,所以 成立.

  (证法二正确,证法一错误.错误的原因是:虽然是从结论出发,但不是逐步逆战结论成立的充分条件,事实上找到明显成立的不等式是结论的必要条件,所以不符合分析法的逻辑原理,犯了逻辑上的错误.)

  [点评]①用分析法证明不等式的逻辑关系是:

  (结论)(步步寻找不等式成立的充分条件)(结论)

  分析法是“执果索因”,它与综合法的证明过程(由因导果)恰恰相反.②用分析法证明时要注意书写格式.分析法论证“若A则B”这个命题的书写格式是:

  要证命题B为真,

  只需证明 为真,从而有……

  这只需证明 为真,从而又有……

  ……

  这只需证明A为真.

  而已知A为真,故命题B必为真.

  要理解上述格式中蕴含的逻辑关系.

  [投影] 例3  证明:通过水管放水,当流速相同时,如果水管截面(指横截面,下同)的周长相等,那么截面是圆的水管比截面是正方形的水管流量大.

  [分析]设未知数,列方程,因为当水的流速相同时,水管的流量取决于水管截面面积的大小,设截面的周长为 ,则周长为

www.nx899.com

的圆的半径为 ,截面积为 ;周长为 的正方形边长为 ,截面积为 ,所以本题只需证明:

  证明:(见课本)

  设计意图:理解分析法与综合法的内在联系,说明分析法在证明不等式中的重要地位.掌

握分析法证明不等式,特别重视分析法证题格式及格式中蕴含的逻辑关系.灵活掌握分析法的应用,培养学生应用数学知识解决实际问题的能力.

  【课堂练习】

  (教师活动)打出字幕(练习),请甲、乙两位同学板演,巡视学生的解题情况,对正确的证法给予肯定,对偏差及时纠正.点评练习中存在的问题.

  (学生活动)在笔记本上完成练习,甲、乙两位同学板演.

  【字幕】练习1.求证

  2.求证:

  设计意图:掌握用分析法证明不等式,反馈课堂效果,调节课堂教学

  【分析归纳、小结解法】

  (教师活动)分析归纳例题和练习的解题过程,小给用分析法证明不等式的解题方法.

  (学生活动)与教师一道分析归纳,小结解题方法,并记录笔记.

  1.分析法是证明不等式的一种常用基本方法.当证题不知从何入手时,有时可以运用分析法而获得解决,特别是对于条件简单而结论复杂的题目往往更是行之有效的.

[1] [2]  下一页

,不等式的证明(三)
Copyright © 能学网 Corporation, All Rights Reserved

1 2 3 4 a b c 5 6 7 8