简单的线性规划(二)
简单的线性规划(二)
简单的线性规划(二)
线性规划教学设计方案(二)
教学目标
巩固二元一次不等式和二元一次不等式组所表示的平面区域,能用此来求目标函数的最值.
重点难点
理解二元一次不等式表示平面区域是教学重点.
如何扰实际问题转化为线性规划问题,并给出解答是教学难点.
教学步骤
【新课引入】
我们知道,二元一次不等式和二元一次不等式组都表示平面区域,在这里开始,教学又翻开了新的一页,在今后的学习中,我们可以逐步看到它的运用.
【线性规划】
先讨论下面的问题
设 ,式中变量x、y满足下列条件
①
求z的最大值和最小值.
我们先画出不等式组①表示的平面区域,如图中 内部且包括边界.点(0,0)不在这个三角形区域内,当 时, ,点(0,0)在直线 上.
作一组和 平等的直线
可知,当l在 的右上方时,直线l上的点 满足 .
即 ,而且l往右平移时,t随之增大,在经过不等式组①表示的三角形区域内的点且平行于l的直线中,以经过点A(5,2)的直线l,所对应的t最大,以经过点 的直线 ,所对应的t最小,所以
在上述问题中,不等式组①是一组对变量x、y的约束条件,这组约束条件都是关于x、y的一次不等式,所以又称线性约束条件.
是欲达到最大值或最小值所涉及的变量x、y的解析式,叫做目标函数,由于 又是x、y的解析式,所以又叫线性目标函数,上述问题就是求线性目标函数 在线性约束条件①下的最大值和最小值问题.
线性约束条件除了用一次不等式表示外,有时也有一次方程表示.
一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题,满足线性约束条件的解 叫做可行解,由所有可行解组成的集合叫做可行域,在上述问题中,可行域就是阴影部分表示的三角形区域,其中可行解(5,2)和(1,1)分别使目标函数取得最大值和最小值,它们都叫做这个问题的最优解.
【应用举例】
例1 解下列线性规划问题:求 的最大值和最小值,使式中的x、y满足约束条件
解:先作出可行域,见图中 表示的区域,且求得 .
作出直线 ,再将直线 平移,当 的平行线 过B点时,可使 达到最小值,当 的平行线 过C点时,可使 达到最大值.
通过这个例子讲清楚线性规划的步骤,即:
第一步:在平面直角坐标系中作出可行域;
第二步:在可行域内找出最优解所对应的点;
第三步:解方程的最优解,从而求出目标函数的最大值或最小值.
例2 解线性规划问题:求 的最大值,使式中的x、y满足约束条件.
解:作出可行域,见图,五边形OABCD表示的平面区域.
作出直线 将它平移至点B,显然,点B的坐标是可行域中的最优解,它使 达到最大值,解方程组 得点B的坐标为(9,2).
∴
这个例题可在教师的指导下,由学生解出.在此例中,若目标函数设为 ,约束条件不变,则z的最大值在点C(3,6)处取得.事实上,可行域内最优解对应的点在何处,与目标函数 所确定的直线 的斜率 有关.就这个例子而言,当 的斜率为负数时,即 时,若 (直线 的斜率)时,线段BC上所有点都是使z取得最大值(如本例);当 时,点C处使z取得最大值(比如: 时),若 ,可请同学思考.
随堂练习
1.求 的最小值,使式中的 满足约束条件
2.求 的最大值,使式中 满足约束条件
答案:1. 时, .
2. 时, .
总结提炼
1.线性规划的概念.
2.线性规划的问题解法.
布置作业
1.求
www.nx899.com>的最大值,使式中的 满足条件
2.求 的最小值,使 满足下列条件
答案:1.
2.在可行域内整点中,点(5,2)使z最小,
探究活动
利润的线性规划
[问题]某企业1997年的利润为5万元,1998年的利润为7万元,1999年的利润为81元,请你根据以上信息拟定两个不同的利润增长直线方程,从而预2001年企业的利润,请问你帮该企业预测的利润是多少万?[分析]首先应考虑在平面直角坐标系中如何描述题中信息:“1997年的利润为5万元,1998年的利润为7万元,1999年的利润为8万元”,在确定这三点坐标后,如何运用这三点坐标,是仅用其中的两点,还是三点信息的综合运用,运用时要注意有其合理性、思考的方向可以考虑将通过特殊点的直线、平行某个线段的直线、与某些点距离最小的直线作为预测直线等等.
建立平面直角坐标系,设1997年的利润为5万元对应的点为 (0,5),1998年的利润为 7万元及1999年的利润为 8万元分别对应点 (1,7)和 (2,8),那么
①若将过 两点的直线作为预测直线 ,其方程为: ,这样预测2001年的利润为13万元.
②若将过 两点的直线作为预测直线 ,其方程为: ,这样预测2001年的利润为11万元.
③若将过 两点的直线作为预测直线 ,其方程为: ,这样预测2001年的利润为10万元.
④若将过 及线段 的中点 的直线作为预测直线 ,其方程为: ,这样预测2001年的利润为11.667万元.
,简单的线性规划(二)- ·上一篇:幂的乘方与积的乘方(二)
- ·下一篇:二次根式的除法
《简单的线性规划(二)》相关文章
- › 简单的线性规划(二)
- 在百度中搜索相关文章:简单的线性规划(二)
tag: 暂无联系方式 高二数学教案,高二数学教案大全,高中数学教案,免费教案下载 - 数学教案 - 高二数学教案
相关分类
高二数学教案 推荐
- · 一个数乘以小数2
- · 函数的图象(二)
- · 北师大版数学(七年级上)生活中的图形(一)
- · §1.6.1逻辑联结词(1)
- · 积的近似值
- · 圆的方程
- · 直线的方程
- · 课 题:1.1集合
- · 不等式的性质(二)
- · 数学教学设计-不等式的性质(一)
- · 数学教学设计-不等式的证明(二)
- · 一节习题课的尝试
- · “预设”与“生成”不是“你死我活”
- · 对话、建构、熏陶
- · 字母能表示什么
- · 数学教学设计-双曲线的几何性质
- · 不等式的性质2
- · 不等式的性质1
- · “转圈”中的数学
- · 不等式的证明(三)