判别一元二次方程根的情况教学设计

判别一元二次方程根的情况教学设计

12-20 17:39:02  浏览次数:323次  栏目:九年级数学教案

判别一元二次方程根的情况教案

文章 来源 www.nx899.com    教学内容
    用b2-4ac大于、等于0、小于0判别ax2+bx+c=0(a≠0)的根的情况及其运用.
    教学目标
    掌握b2-4ac>0,ax2+bx+c=0(a≠0)有两个不等的实根,反之也成立;b2-4ac=0,ax2+bx+c=0(a≠0)有两个相等的实数根,反之也成立;b2-4ac<0,ax2+bx+c=0(a≠0)没实根,反之也成立;及其它们关系的运用.
    通过复习用配方法解一元二次方程的b2-4ac>0、b2-4ac=0、b2-4ac<0各一题,分析它们根的情况,从具体到一般,给出三个结论并应用它们解决一些具体题目.
    重难点关键
    1.重点:b2-4ac>0 一元二次方程有两个不相等的实根;b2-4ac=0 一元二次方程有两个相等的实数;b2-4ac<0 一元二次方程没有实根.
    2.难点与关键
    从具体题目来推出一元二次方程ax2+bx+c=0(a≠0)的b2-4ac的情况与根的情况的关系.
    教具、学具准备
    小黑板
    教学过程
    一、复习引入
    (学生活动)用公式法解下列方程.
    (1)2x2-3x=0    (2)3x2-2 x+1=0    (3)4x2+x+1=0
    老师点评,(三位同学到黑板上作)老师只要点评(1)b2-4ac=9>0,有两个不相等的实根;(2)b2-4ac=12-12=0,有两个相等的实根;(3)b2-4ac=│-4×4×1│=<0,方程没有实根.
    二、探索新知
    方程 b2-4ac的值 b2-4ac的符号 x1、x2的关系
    (填相等、不等或不存在)
    2x2-3x=0   
    3x2-2 x+1=0
    4x2+x+1=0   
    请观察上表,结合b2-4ac的符号,归纳出一元二次方程的根的情况。证明你的猜想。
    从前面的具体问题,我们已经知道b2-4ac>0(<0,=0)与根的情况,现在我们从求根公式的角度来分析:
    求根公式:x= ,当b2-4ac>0时,根据平方根的意义, 等于一个具体数,所以一元一次方程的x1= ≠x1= ,即有两个不相等的实根.当b2-4ac=0时,根据平方根的意义 =0,所以x1=x2= ,即有两个相等的实根;当b2-4ac<0时,根据平方根的意义,负数没有平方根,所以没有实数解.
    因此,(结论)(1)当b2-4ac>0时,一元二次方程ax2+bx+c=0(a≠0)有两个不相等实数根即x1= ,x2= .
    (2)当b-4ac=0时,一元二次方程ax2+bx+c=0(a≠0)有两个相等实数根即x1=x2= .
    (3)当b2-4ac<0时,一元二次方程ax2+bx+c=0(a≠0)没有实数根.
    例1.不解方程,判定方程根的情况
    (1)16x2+8x=-3    (2)9x2+6x+1=0
    (3)2x2-9x+8=0    (4)x2-7x-18=0
    分析:不解方程,判定根的情况,只需用b2-4ac的值大于0、小于0、等于0的情况进行分析即可.
    解:(1)化为16x2+8x+3=0
    这里a=16,b=8,c=3,b2-4ac=64-4×16×3=-128<0
    所以,方程没有实数根.
    三、巩固练习
    不解方程判定下列方程根的情况:
    (1)x2+10x+26=0    (2)x2-x- =0      (3)3x2+6x-5=0      (4)4x2-x+ =0
    (5)x2- x- =0  (6)4x2-6x=0      (7)x(2x-4)=5-8x
    四、应用拓展
    例2.若关于x的一元二次方程(a-2)x2-2ax+a+1=0没有实数解,求ax+3>0的解集(用含a的式子表示).
    分析:要求ax+3>0的解集,就是求ax>-3的解集,那么就转化为要判定a的值是正、负或0.因为一元二次方程(a-2)x2-2ax+a+1=0没有实数根,即(-2a)2-4(a-2)(a+1)<0就可求出a的取值范围.
    解:∵关于x的一元二次方程(a-2)x2-2ax+a+1=0没有实数根.
    ∴(-2a)2-4(a-2)(a+1)=4a2-4a2+4a+8<0
    a<-2
    ∵ax+3>0即ax&

www.nx899.com

gt;-3
    ∴x<-
    ∴所求不等式的解集为x<-
    五、归纳小结
    本节课应掌握:
    b2-4ac>0 一元二次方程ax2+bx+c=0(a≠0)有两个不相等的实根;b2-4ac=0   一元二次方程ax2+bx+c=0(a≠0)有两个相等的实根;b2-4ac<0 一元二次方程ax2+bx+c=0(a≠0)没有实数根及其它的运用.
    六、布置作业
    1.教材P46  复习巩固6  综合运用9  拓广探索1、2.
    2.选用课时作业设计.
    第7课时作业设计
    一、选择题
    1.以下是方程3x2-2x=-1的解的情况,其中正确的有(  ).
    A.∵b2-4ac=-8,∴方程有解
    B.∵b2-4ac=-8,∴方程无解
    C.∵b2-4ac=8,∴方程有解
    D.∵b2-4ac=8,∴方程无解
    2.一元二次方程x2-ax+1=0的两实数根相等,则a的值为(  ).
    A.a=0     B.a=2或a=-2
    C.a=2     D.a=2或a=0
    3.已知k≠1,一元二次方程(k-1)x2+kx+1=0有根,则k的取值范围是(  ).
    A.k≠2     B.k>2     C.k<2且k≠1    D.k为一切实数
    二、填空题
    1.已知方程x2+px+q=0有两个相等的实数,则p与q的关系是________.
    2.不解方程,判定2x2-3=4x的根的情况是______(填"二个不等实根"或"二个相等实根或没有实根").
    3.已知b≠0,不解方程,试判定关于x的一元二次方程x2-(2a+b)x+(a+ab-2b2)=0的根的情况是________.
    三、综合提高题
    1.不解方程,试判定下列方程根的情况.
    (1)2+5x=3x2    (2)x2-(1+2 )x+ +4=0
    2.当c<0时,判别方程x2+bx+c=0的根的情况.
    3.不解方程,判别关于x的方程x2-2kx+(2k-1)=0的根的情况.
    4.某集团公司为适应市场竞争,赶超世界先进水平,每年将销售总额的8%作为新产品开发研究资金,该集团2000年投入新产品开发研究资金为4000万元,2002年销售总额为7.2亿元,求该集团2000年到2002年的年销售总额的平均增长率.

文章 来源 www.nx899.com

,判别一元二次方程根的情况教学设计

《判别一元二次方程根的情况教学设计》相关文章

tag: 教学   九年级数学教案,九年级下册数学教案,中学数学教案,免费教案下载 - 数学教案 - 九年级数学教案

Copyright © 能学网 Corporation, All Rights Reserved

1 2 3 4 a b c 5 6 7 8