一元二次方程教学设计5
一元二次方程教学设计5
一元二次方程教案5
文章来源www.nx899.com 教学内容1.一元二次方程根的概念;
2.根据题意判定一个数是否是一元二次方程的根及其利用它们解决一些具体题目.
教学目标
了解一元二次方程根的概念,会判定一个数是否是一个一元二次方程的根及利用它们解决一些具体问题.
提出问题,根据问题列出方程,化为一元二次方程的一般形式,列式求解;由解给出根的概念;再由根的概念判定一个数是否是根.同时应用以上的几个知识点解决一些具体问题.
重难点关键
1.重点:判定一个数是否是方程的根;
2.难点关键:由实际问题列出的一元二次方程解出根后还要考虑这些根是否确定是实际问题的根.
教学过程
一、复习引入
学生活动:请同学独立完成下列问题.
问题1.前面有关"执竿进屋"的问题中,我们列得方程x2-8x+20=0
列表:
x 1 2 3 4 5 6 7 8 9 10 11 …
x2-8x+20 …
问题2.前面有关长方形的面积的问题中,我们列得方程x2+7x-44=0即x2+7x=44
x 1 2 3 4 5 6 …
x2+7x …
列表:
老师点评(略)
二、探索新知
提问:(1)问题1中一元二次方程的解是多少?问题2中一元二次方程的解是多少?
(2)如果抛开实际问题,问题2中还有其它解吗?
老师点评:(1)问题1中x=2与x=10是x2-8x+20=0的解,问题2中,x=4是x2+7x-44=0的解.(2)如果抛开实际问题,问题2中还有x=-11的解.
一元二次方程的解也叫做一元二次方程的根.
回过头来看:x2-8x+20=0有两个根,一个是2,另一个是10,都满足题意;但是,问题2中的x=-11的根不满足题意.因此,由实际问题列出方程并解得的根,并不一定是实际问题的根,还要考虑这些根是否确实是实际问题的解.
例1.下面哪些数是方程2x2+10x+12=0的根?
-4,-3,-2,-1,0,1,2,3,4.
分析:要判定一个数是否是方程的根,只要把其代入等式,使等式两边相等即可.
解:将上面的这些数代入后,只有-2和-3满足方程的等式,所以x=-2或x=-3是一元二次方程2x2+10x+12=0的两根.
例2.若x=1是关于x的一元二次方程a x2+bx+c=0(a≠0)的一个根,求代数式2007(a+b+c)的值
练习:关于x的一元二次方程(a-1) x2+x+a 2-1=0的一个根为0,则求a的值
点拨:如果一个数是方程的根,那么把该数代入方程,一定能使左右两边相等,这种解决问题的思维方法经常用到,同学们要深刻理解.
例3.你能用以前所学的知识求出下列方程的根吗?
(1)x2-64=0 (2)3x2-6=0 (3)x2-3x=0
分析:要求出方程的根,就是要求出满足等式的数,可用直接观察结合平方根的意义.
解:略
三、巩固练习
教材P33 思考题 练习1、2.
四、应用拓展
例3.要剪一块面积为150cm2的长方形铁片,使它的长比宽多5cm,这块铁片应该怎样剪?
设长为xcm,则宽为(x-5)cm
列方程x(x-5)=150,即x2-5x-150=0
请根据列方程回答以下问题:
(1)x可能小于5吗?可能等于10吗?说说你的理由.
(2)完成下表:
x 10 11 12 13 14 15 16 17 …
x2-5x-150
(3)你知道铁片的长x是多少吗?
分析:x2-5x-150=0与上面两道例题明显不同,不能用平方根的意义和八年级上 www.nx899.com
册的整式中的分解因式的方法去求根,但是我们可以用一种新的方法──"夹逼"方法求出该方程的根.
解:(1)x不可能小于5.理由:如果x<5,则宽(x-5)<0,不合题意.
x不可能等于10.理由:如果x=10,则面积x2-5x-150=-100,也不可能.
(2)
x 10 11 12 13 14 15 16 17 ……
x2-5x-150 -100 -84 -66 -46 -24 0 26 54 ……
(3)铁片长x=15cm
五、归纳小结(学生归纳,老师点评)
本节课应掌握:
(1)一元二次方程根的概念;
(2)要会判断一个数是否是一元二次方程的根;
(3)要会用一些方法求一元二次方程的根.("夹逼"方法; 平方根的意义)
六、布置作业
1.教材P34 复习巩固3、4 综合运用5、6、7 拓广探索8、9.
2.选用课时作业设计.
作业设计
一、选择题
1.方程x(x-1)=2的两根为( ).
A.x1=0,x2=1 B.x1=0,x2=-1 C.x1=1,x2=2 D.x1=-1,x2=2
2.方程ax(x-b)+(b-x)=0的根是( ).
A.x1=b,x2=a B.x1=b,x2= C.x1=a,x2= D.x1=a2,x2=b2
3.已知x=-1是方程ax2+bx+c=0的根(b≠0),则 =( ).
A.1 B.-1 C.0 D.2
二、填空题
《一元二次方程教学设计5》相关文章
- › 上学期 1.5 一元二次不等式的解法
- › 数学教学设计-一元二次方程的应用(一)
- › 用公式法解一元二次方程教学设计
- › 一元二次方程教学设计5
- › 实际问题与一元二次方程教学设计2
- › 一元二次方程
- › 数学教学设计-列一元二次方程解应用题
- › 数学教学设计-一元二次方程根与系数关系
- › 数学教学设计-可化为一元二次方程的分式方程
- › 数学教学设计-一元二次方程的根与系数的关系(一)
- › 判别一元二次方程根的情况教学设计
- › 实际问题与一元二次方程免费教学案下载
- 在百度中搜索相关文章:一元二次方程教学设计5
tag: 教学 九年级数学教案,九年级下册数学教案,中学数学教案,免费教案下载 - 数学教案 - 九年级数学教案
相关分类
九年级数学教案 推荐
- · 数学教学设计-二次函数
- · 数学教学设计-直线和圆的位置关系
- · 数学教学设计-圆、扇形、弓形的面积
- · 数学教学设计-两圆的位置关系
- · 用公式法解一元二次方程教学设计
- · 正切和余切教学设计2
- · 一元二次方程教学设计5
- · 实际问题与一元二次方程教学设计2
- · 数学教学设计-二次函数y=ax2+bx+c 的图象
- · 圆柱和圆锥的侧面展开图
- · 一元二次方程
- · 众数与中位数
- · 数学教学设计-相切在作图中的应用
- · 正多边形和圆
- · 数学教学设计-可化为一元二次方程的分式方
- · 正多边形的有关计算
- · 画正多边形
- · 数学教学设计-切线长定理
- · 数学教学设计-和圆有关的比例线段
- · 数学教学设计-两圆的公切线