立方根
立方根
立方根
一、教学目标
1.了解立方根和开立方的概念;
2.会用根号表示一个数的立方根,掌握开立方运算;
3.培养学生用类比的思想求立方根的运算能力;
4.由立方与立方根的教学,渗透数学的转化思想;
5.通过立方根符号的引入体验数学的简洁美.
二、教学重点和难点
教学重点:立方根的概念与性质.
教学难点:会求某些数的立方根.
三、教学方法
启发式,讲练结合
四、教学手段
幻灯片.
五、教学过程
(一)复习提问
请同学们回忆一下,平方根我们是如何定义的?平方根有哪些性质?
在同学们回答后,启发学生是否可试着给数的立方根下个定义.
1.立方根的概念:
如果一个数的立方等于a,这个数就叫做a的立方根.(也称数a的三次方根)
用数学式表示为:
若x3=a,则x叫做a的立方根,或称x叫做a的三次方根.
2.立方根的表示方法:
类似于平方根德表示方法,数a的立方根我们用符号 来表示.读作“三次根号下a”,其中a叫做被开方数,3叫做根指数,注意,在前面我们学习平方根的表示方法说过当根指数为2时可以省略不写,现在是立方根了,这个根指数3是绝对不可省的,否则就会与平方根混淆了,例如 表示125的立方根,而 则表示125的算术平方根.
练习:用根号表示下列各数的立方根:
3.开立方概念:
求一个数的立方根的运算,叫做开立方.
4.开立方运算与立方运算互为逆运算.
因此,我们可以根据立方运算来求一些数的立方根.
例1. 求下列各数的立方根:
解:(1)∵(-2)3=-8,
(2)∵23=8,
(4)∵ (0.6)3=0.216,
(5)∵03=0,
下面我们思考这样一个问题:一个正数有几个平方根?负数有没有平方根?一个正数有几个立方根?负数有没有立方根?请学生来回答这个问题.由前面刚刚做过的题我们不难看出像8、0.126、103、 这样的正数,有一个正的立方根;像-8、 、 这样的负数有一个负的立方根;0的立方根是0.由此我们得了立方根的性质.
5.立方根的性质:
(1)正数有一个正的立方根.
(2)负数有一个负的立方根.
(3)0的立方根是0.
这里我们不妨与平方根的性质做个比较,平方根中,正数有两个平方根,它们互为相反数,正数只有一个正的立方根;在平方根中负数是没有平方根的,而负数有一个负的立方根;平方根与立方根唯一相同之处是0的平方根,立方根都是它本身.
第 1 2 页
,立方根
- ·上一篇:数学教学设计-比较数的大小、近似数
- ·下一篇:风的秘密教材分析
相关分类
八年级数学教案 推荐
- · 最简二次根式 免费教学案下载示例5
- · 矩形
- · 四边形
- · 数学教学设计-三角形的内角和
- · 数学教学设计-菱形教学示例 第二课时
- · 等腰三角形的性质
- · 相似三角形的性质 (第2课时)
- · 相似三角形的性质
- · 梯形的中位线
- · 数学教学设计-一元一次不等式和它的解法
- · 三角形三条边的关系
- · 分式的乘除法
- · 数学教学设计-三角形相似的判定 (第2课时
- · 数学教学设计-平行四边形的判定 (第一课时
- · 数学教学设计-相似三角形的性质
- · 数学教学设计-中心对称和中心对称图形
- · 数学教学设计-平均数
- · 三角形相似的判定
- · 平行线分线段成比例定理 (第二课时)
- · 相似三角形