数学教学设计-相似三角形的性质

数学教学设计-相似三角形的性质

12-20 17:40:50  浏览次数:275次  栏目:八年级数学教案

数学教案-相似三角形的性质

教学建议

  知识结构

 

  重点、难点分析

  相似三角形的性质及应用是本节的重点也是难点.

  它是本章的主要内容之一,是在学完相似三角形判断的基础上,进一步研究相似三角形的性质,以完成对相似三角形的定义、判定和性质的全面研究.相似三角形的性质还是研究相似多边形性质的基础,是今后研究圆中线段关系的工具.

  它的难度较大,是因为前面所学的知识主要用来证明两条线段相等,两个角相等,两条直线平行、垂直等.借助于图形的直观可以有助于找到全等三角形.但是到了相似形,主要是研究线段之间的比例关系,借助于图形进行观察比较困难,主要是借助于逻辑的体系进行分析、探求,难度较大.

  教法建议

  1.教师在知识的引入中可考虑从生活实例引入,例如照片的放大、模型的设计等等

  2.教师在知识的引入中还可以考虑问题式引入,设计一个具体问题由学生参与解答

  3.在知识的巩固中要注意与全等三角形的对比

(第1课时)

  一、教学目标

  1.使学生进一步理解相似比的概念,掌握相似三角形的性质定理1.

  2.学生掌握综合运用相似三角形的判定定理和性质定理1来解决问题.

  3.进一步培养学生类比的教学思想.

  4.通过相似性质的学习,感受图形和语言的和谐美

  二、教法引导

  先学后教,达标导学

  三、重点及难点

  1.教学重点:是性质定理1的应用.

  2.教学难点:是相似三角形的判定1与性质等有关知识的综合运用.

  四、课时安排

  1课时

  五、教具学具准备

  投影仪、胶片、常用画图工具.

  六、教学步骤

  [复习提问]

  1.三角形中三种主要线段是什么?

  2.到目前为止,我们学习了相似三角形的哪些性质?

  3.什么叫相似比?

  [讲解新课]

  根据相似三角形的定义,我们已经学习了相似三角形的对应角相等,对应边成比例.

  下面我们研究相似三角形的其他性质(见图).


  建议让学生类比“全等三角形的对应高、对应中线、对应角平分线相等”来得出性质定理1.

  性质定理1:相似三角形对应高的比,对应中线的比和对应角平分的比都等于相似比

   ∽ ,

   ,

  

  教师启发学生自己写出“已知、求证”,然后教师分析证题思路,这里需要指出的是在寻找判定两三角形相似所欠缺的条件时,是根据相似三角形的性质得到的,这种综合运用相似三角形判定与性质的思维方法要向学生讲清楚,而证明过程可由学生自己完成.

  分析示意图:结论→∽(欠缺条件)→∽(已知)

   ∽ ,

  BM=MC,

  

   ∽ ,

  

  以上两种情况的证明可由学生完成.

  [小结]

  本节主要学习了性质定理1的证明,重点掌握综合运用相似三角形的判定与性质的思维方法.

  七、布置作业

  教材P241中3、教材P247中A组3.

  八、板书设计


,数学教学设计-相似三角形的性质
Copyright © 能学网 Corporation, All Rights Reserved

1 2 3 4 a b c 5 6 7 8