数学教学设计-对数函数
数学教学设计-对数函数
(1) 定义域:
(2) 值域:
由以上两条可说明图像位于 轴的右侧.
(3) 截距:令 得 ,即在 轴上的截距为1,与 轴无交点即以 轴为渐近线.
(4) 奇偶性:既不是奇函数也不是偶函数,即它不关于原点对称,也不关于 轴对称.
(5) 单调性:与 有关.当 时,在 上是增函数.即图像是上升的
当 时,在 上是减函数,即图像是下降的.
之后可以追问学生有没有最大值和最小值,当得到否定答案时,可以再问能否看待何时函数值为正?学生看着图可以答出应有两种情况:
当 时,有 ;当 时,有 .
学生回答后教师可指导学生巧记这个结论的方法:当底数与真数在1的同侧时函数值为正,当底数与真数在1的两侧时,函数值为负,并把它当作第(6)条性质板书记下来.
最后教师在总结时,强调记住性质的关键在于要脑中有图.且应将其性质与指数函数的性质对比记忆.(特别强调它们单调性的一致性)
对图像和性质有了一定的了解后,一起来看看它们的应用.
三.简单应用 (板书)
1. 研究相关函数的性质
例1. 求下列函数的定义域:
(1) (2) (3)
先由学生依次列出相应的不等式,其中特别要注意对数中真数和底数的条件限制.
2. 利用单调性比较大小 (板书)
例2. 比较下列各组数的大小
(1) 与 ; (2) 与 ;
(3) 与 ; (4) 与 .
让学生先说出各组数的特征即它们的底数相同,故可以构造对数函数利用单调性来比大小.最后让学生以其中一组为例写出详细的比较过程.
三.巩固练习
练习:若 ,求 的取值范围.
四.小结
五.作业 略
板书设计
2.8对数函数
一. 概念
1. 定义 2.认识
二.图像与性质
1.作图方法
2.草图
图1 图2
3.性质
(1)&nbs
www.nx899.comp; 定义域(2)值域(3)截距(4)奇偶性(5)单调性
三.应用
1.相关函数的研究
例1 例2
练习
探究活动
(1) 已知 是函数 的反函数,且 都有意义.
① 求 ;
② 试比较 与4 的大小,并说明理由.
(2) 设常数 则当 满足什么关系时, 的解集为
答案:
(1) ① ;
②当 时, <4 ;当 时, 4
(2) .
,数学教学设计-对数函数
- ·上一篇:数学教学设计-等差数列的前n项和
- ·下一篇:幼儿园中班韵律活动《幸福拍手歌》
《数学教学设计-对数函数》相关文章
- › 数学教学心得体会
- › 课改下对数学教学的思考
- › 如何吸引住学生——数学教学课改反思
- › 二、遵循儿童认知特点,改进数学教学
- › 一、在数学教学中,首要的是培养学生良好的数学素养
- › 一、在数学教学中让小学生知、情、意、行和谐发展
- › 四、立足全局,正确把握小学数学教学改革的发展方向
- › 在数学教学中育人
- › 在数学教学中培养学生的创新能力
- › 开设数学学法指导课,并列入数学教学计划
- › 我的数学教学改革实验
- › 让丰富的图形引领数学教学
- 在百度中搜索相关文章:数学教学设计-对数函数
tag: 教学 数学 对数函数 高一数学教案,高一数学教案大全,高中数学教案,免费教案下载 - 数学教案 - 高一数学教案
相关分类
高一数学教案 推荐
- · 含绝对值的不等式
- · 数学教学设计-子集、全集、补集
- · 上学期 1.5 一元二次不等式的解法
- · 数学教学设计-正余弦函数的图象
- · 数学教学设计-数列
- · 数学教学设计-等差数列
- · 数学教学设计-逻辑联结词
- · 子集、全集、补集
- · 上学期 3.1数列
- · 上学期 2.6 指数函数
- · 下学期 4.5 正弦、余弦的诱导公式
- · 下学期 4.7 二倍角的正弦、余弦、正切1
- · 上学期 1.3 交集、并集
- · 上学期 1.2 子集、全集、补集
- · 数学教学设计-反函数
- · 上学期2.5 指数
- · 上学期 2.4 反函数
- · 上学期 2.3 函数单调性与奇偶性
- · 上学期 1.4 含绝对值的不等式
- · 数学教学设计-指数