数学教学设计-圆、扇形、弓形的面积
数学教学设计-圆、扇形、弓形的面积
2)
教师引导学生并渗透数学建模思想,分析:
(1)“水平放着的圆柱形排水管的截面半径是0.6m”为你提供了什么数学信息?
(2)求截面上有水的弓形的面积为你提供什么信息?
(3)扇形、三角形、弓形是什么关系,选择什么公式计算?
学生完成解题过程,并归纳三角形OAB的面积的求解方法.
反思:①要注重题目的信息,处理信息;②归纳三角形OAB的面积的求解方法,根据条件特征,灵活应用公式;③弓形的面积可以选用图形分解法,将它转化为扇形与三角形的和或差来解决.
例4、已知:⊙O的半径为R,直径AB⊥CD,以B为圆心,以BC为半径作 .求 与 围成的新月牙形ACED的面积S.
解:∵ ,
有∵ ,
, ,
∴ .
组织学生反思解题方法:图形的分解与组合;公式的灵活应用.
(四)总结
1、弓形面积的计算:首先看弓形弧是半圆、优弧还是劣弧,从而选择分解方案;
2、应用弓形面积解决实际问题;
3、分解简单组合图形为规则圆形的和与差.
(五)作业 教材P183练习2;P188中12.
圆、扇形、弓形的面积(三)
教学目标:
1、掌握简单组合图形分解和面积的求法;
2、进一步培养学生的观察能力、发散思维能力和综合运用知识分析问题、解决问题的能力;
3、渗透图形的外在美和内在关系.
教学重点:简单组合图形的分解.
教学难点:对图形的分解和组合.
教学活动设计:
(一)知识回顾
复习提问:1、圆面积公式是什么?2、扇形面积公式是什么?如何选择公式?3、当弓形的弧是半圆时,其面积等于什么?4、当弓形的弧是劣弧时,其面积怎样求?5、当弓形的弧是优弧时,其面积怎样求?
(二)简单图形的分解和组合
1、图形的组合
让学生认识图形,并体验图形的外在美,激发学生的研究兴趣,促进学生的创造力.
2、提出问题:正方形的边长为a,以各边为直径,在正方形内画半圆,求所围成的图形(阴影部分)的面积.
以小组的形式协作研究,班内交流思想和方法,教师组织.给学生发展思维的空间,充分发挥学生的主体作用.
归纳交流结论:
方案1.S阴=S正方形-4S空白.
方案2、S阴=4S瓣=4 (S半圆-S△AOB)
=2S圆-4S△AOB=2S圆-S正方形ABCD
方案3、S阴=4S瓣=4 (S半圆-S正方形AEOF)
=2S圆-4S正方形AEOF =2S圆-S正方形ABCD
方案4、S阴=4 S半圆-S正方形ABCD
……………
反思:①对图形的分解不同,解题的难易程度不同,解题中要认真观察图形,追求最美的解法;②图形的美也存在着内在的规律.
练习1:如图,圆的半径为r,分别以圆周上三个等分点为圆心,以r为半径画圆弧,则阴影部分面积是多少?
分析:连结OA,阴影部分可以看成由六个相同的弓形AmO组成.
解:连结AO,设P为其中一个三等分点,
连结PA、PO,则△POA是等边三角形.
.
∴
www.nx899.com说明:① 图形的分解与重新组合是重要方法;②本题还可以用下面方法求:若连结AB,用六个弓形APB的面积减去⊙O面积,也可得到阴影部分的面积.
练习2:教材P185练习第1题
例5、 已知⊙O的半径为R.
(1)求⊙O的内接正三角形、正六边形、正十二边形的周长与⊙O直径(2R)的比值;
(2)求⊙O的内接正三角形、正六边形、正十二边形的面积与圆面积的比值(保留两位小数).
例5的计算量较大,老师引导学生完成.并进一步巩固正多边形的计算知识,提高学生的计算能力.
说明:从例5(1)可以看出:正多边形的周长与它的外接圆直径的比值,与直径的大小无关.实际上,古代数学家就是用逐次倍增正多边形的边数,使正多边形的周长趋近于圆的周长,从而求得了π的各种近似值.从(2)可以看出,增加圆内接正多边形的边数,可使它的面积趋近于圆的面积
(三)总结
1、简单组合图形的分解;
2、进一步巩固了正多边形的计算以,巩固了圆周长、弧长、圆面积、扇形面积、弓形面积的计算.
3、进一步理解了正多边形和圆的关系定理.
(四)作业 教材P185练习2、3;P187中8、11.
探究活动
四瓣花形
在边长为1的正方形中分别以四个顶点为圆心,以l为半径画弧所交成的“四瓣梅花”图形,如图 (1)所示.
再分别以四边中点为圆心,以相邻的两边中点连线为半径画弧而交成的“花形”,如图 (12)所示.
探讨:(1)两图中的圆弧均被互分为三等份.
(2)两朵“花”是相似图形.
(3)试求两“花”面积
提示:分析与解 (1)如图21所示,连结PD、PC,由PD=PC=DC知,∠PDC=60°.
从而,∠ADP=30°.
同理∠CDQ=30°.故∠ADP=∠CDQ=30°,即,P、Q是AC弧的三等分点.
由对称性知,四段弧均被三等分.
如果证明了结论(2),则图 (12)也得相同结论.
(2)如图(22)所示,连结E、F、G、H所得的正方形EFGH内的花形恰为图 (1)的缩影.显然两“花”是相似图形;其相似比是AB ﹕EF = ﹕1.
(3)花形的面积为: , .
,数学教学设计-圆、扇形、弓形的面积
《数学教学设计-圆、扇形、弓形的面积》相关文章
相关分类
九年级数学教案 推荐
- · 数学教学设计-二次函数
- · 数学教学设计-直线和圆的位置关系
- · 数学教学设计-圆、扇形、弓形的面积
- · 数学教学设计-两圆的位置关系
- · 用公式法解一元二次方程教学设计
- · 正切和余切教学设计2
- · 一元二次方程教学设计5
- · 实际问题与一元二次方程教学设计2
- · 数学教学设计-二次函数y=ax2+bx+c 的图象
- · 圆柱和圆锥的侧面展开图
- · 一元二次方程
- · 众数与中位数
- · 数学教学设计-相切在作图中的应用
- · 正多边形和圆
- · 数学教学设计-可化为一元二次方程的分式方
- · 正多边形的有关计算
- · 画正多边形
- · 数学教学设计-切线长定理
- · 数学教学设计-和圆有关的比例线段
- · 数学教学设计-两圆的公切线