圆柱和圆锥的侧面展开图

圆柱和圆锥的侧面展开图

12-20 17:40:50  浏览次数:904次  栏目:九年级数学教案

  然后按总结顺序;依次提问学生,此过程应重点提问中下生.

  布置作业

  教材P.187练习1、2;P.192中2、3、4。

  九、板书设计


第二课时

  素质教育目标

  (一)知识教育

  1.使学生了解圆锥的特征,了解圆锥的侧面、底面、高、轴、母线、过轴的截面等概念,了解圆锥的侧面展开图是扇形。

  2.使学生会计算圆锥的侧面积或全面积。

  (二)能力训练点

  1.通过圆锥的形成过程的教学,培养学生观察能力、抽象思维能力和概括能力;

  2.通过圆锥的面积计算,培养学生正确迅速的运算能力;

  3.通过实际问题的教学,培养学生空间想象能力,从实际问题中抽象出数学模型的能

  力.

  (三)德育渗透点

  1.通过圆锥的实物观察及有关概念的归纳向学生渗透“实践出真知”的观念;

  2.通过应用圆锥展示图的计算解决实际问题,向学生渗透理论联系实际的观点;

  3.通过圆锥侧面展示图的教学,向学生渗透化曲面为平面,化立体图形为平面图形的“转化”的观点;

  4.通过圆锥轴截面的教学,向学生渗透“抓主要矛盾,抓本质”的矛盾论的观点.

  (四)美育渗透点

  通过学习新知,使学生进一步完整对几何美的认识,提高美育层次.

  重点·难点·疑点及解决办法

  1.重点:(1)圆锥的形成过程和圆锥的轴、母线、高等概念及其性质;

  (2)会进行圆锥侧面展开图的计算,计算圆锥的表面积.

  2.难点:准确进行圆锥有关数据与展开图有关数据的转化.

  3.疑点及解决方法:由于学生空间想象能力较弱,对圆锥的侧面展开图是扇形,用扇形一定可以围成一个圆锥的侧面有疑惑,为此安排学生课前或课上或课下自己动手剪剪看或围围看,通过实践解决疑点.

  教学步骤

  (一)明确目标

  在小学,同学们除了学习圆柱之外还学习了一个几何体——圆锥,在生活中我们也常常遇到圆锥形的物体,涉及到这些物体表面积的计算.这些圆锥形物体的表面积是怎样计算出来的?这就是本节课“7.21圆锥的侧面展开图”所要研究的内容.

  (二)整体感如

  和圆柱一样,圆锥也是日常生活或实践活动中常见物体,在学生学过圆柱的有关计算后,进一步学习圆锥的有关计算,不仅对培养学生的空间观念有好处,而且能使学生体会到用平面几何知识可以解决立体图形的计算,为学习立体几何打基础.

  圆锥的侧面展开图不仅用于圆锥表面积的计算,而且在生产中常用于画图下料上,因此圆锥侧面展开图是本课的重点.

  本课首先在小学已具有圆锥直观感知的基础上,用直角三角形旋转运动的观点给出圆锥的一系列概念,然后利用圆锥的模型,把其侧面展开,使学生认识到圆锥的侧面展开图是一个扇形,并能将圆锥的有关元素与展开图扇形的有关元素进行相互间的转化,最后应用圆锥及其侧面展开图之间对应关系进行计算.

  (三)教学过程(www.nx899.com)

  [幻灯展示生活中常遇的圆锥形物体,如:铅锤、粮堆、烟囱帽]前面屏幕上展示的物体都是什么几何体?[安排回忆起的学生回答:圆锥]在小学我们已学过圆锥,哪位同学能说出圆锥有哪些特征?安排举手的学生回答:圆锥是由一个底面和一个侧面围成的,圆锥的底面是一个圆,侧面是一个曲面,从圆锥的顶点到底面圆的距离是圆锥的高。

  [教师边演示模型,边讲解]:大家观察Rt ,绕直线SO旋转一周得到的图形是什么?[安排中下生回答:圆锥.]大家观察圆锥的底面,它是Rt 的哪条边旋转而成的?[安排中下生回答:OA]圆锥的侧面是Rt 的什么边旋转而得的?[安排中下生回答,斜边],因圆锥是Rt 绕直线SO旋转一周得到的,与圆柱相类似,直线SO应叫做圆锥的什么?[安排中下生回答:轴.]大家观察圆锥的轴SO应具有什么性质?[安排学生稍加讨论,举手发言:圆锥的轴过底面圆的圆心,且与底面圆垂直,轴上连接圆锥顶点与底面圆心的线段就是圆锥的高.]圆锥的侧面是Rt 的斜边绕直线SO旋转一周得到的,同圆柱相类似,斜边SA应叫做圆锥的什么?[安排中下生回答:母线.]给一圆锥,如何找到它的母线?[安排中上生回答:连结圆锥顶点与底面圆任意一点的线段都是母线.]圆锥的母线应具有什么性质?[安排中下生回答:圆锥的母线长都相等.]

  [教师边演示模型,边启发提问]:现在我把这圆锥的侧面沿它的一条母线剪开,展在一个平面上,哪位同学发现这个展开图是什么图形?[安排中下生回答:扇形.]请同学们仔细观察:并回答:1.圆锥展示图——扇形的弧长l等于圆锥底面圆的什么?扇形的半径其实是圆锥的什么线段?[安排中下生回答:扇形的弧长是底面圆的周长,即 ,扇形的半径。就是圆锥的母线]由于 ,圆锥半径已知则展开图扇形的弧长已知,圆锥母线已知则展开图扇形的半径已知,因此展开图扇形的面积可求,而这个扇形的面积实质就是圆锥的侧面积,因此圆锥的侧面积也就可求.当然展开图扇形的圆心角也可求.

  [教师边演示模型,边启发提问]:如图,现在将圆锥沿着它的轴剖开,哪位同学回答,经过轴的剖面是一个什么图形?[安排中下生回答:等腰三角形.]这个等腰三角形的腰与底分别是圆锥的什么?[安排中下生回答:腰是圆锥的母线,底是圆锥的直径.这个等腰三角形的高也就是圆锥的什么?[安排中下生回答:高].这个经过轴的剖面,我们称之谓“轴截

www.nx899.com

面”,在轴截面里包含了有关圆锥的所有元素:轴、高、母线,底面圆半径.这个等腰三角形的顶角,我们称之谓“锥角”,大家不难发现圆锥的母线、高、底面圆半径及 锥角构成了一个直角三角形,它给定旋转一周得圆锥的那个直角三角形,当然给定半径、母线;圆锥侧面展开图——扇形的面积、圆心角可求、因此可以说有关圆锥的计算问题,其实质就是解这个直角三角形的问题.

  幻灯展示例题:如图,圆锥形的烟囱帽的底面直径是80cm,母线长50cm,(1)计算这个展开图的圆心角及面积;(2)画出它的展开图.

  要计算展开图的面积,哪位同学知道展开图扇形的弧长是圆锥底面圆的什么?[安排中下生回答:周长.[展开图形的半径是圆锥的什么?[安排中下生回答:母线.]

  请同学们计算这个展开图的面积.[安排一中等生上黑板完成,其余学生在练习本上做.]

  解:圆锥底面圆直径80cm,∴底面圆周长 cm,又母线长50cm  ∴展开图扇形的半径50cm,弧长 cm。∴ 

上一页  [1] [2] [3]  下一页

,圆柱和圆锥的侧面展开图

《圆柱和圆锥的侧面展开图》相关文章

tag: 暂无联系方式 九年级数学教案,九年级下册数学教案,中学数学教案,免费教案下载 - 数学教案 - 九年级数学教案

Copyright © 能学网 Corporation, All Rights Reserved

1 2 3 4 a b c 5 6 7 8