第十节 消隐和消亮点电路
第十节 消隐和消亮点电路
三它激型单管变换器控制电路
单管开关电源脉宽控制电路由误差检测放大器振荡器脉宽控制器三部分组成图1.95 为控制电路原理框图图1.95 控制电路原理框图前面已提到对于单管自激式开关电源来说振荡器和驱动器均由变换器完成本节不详细讲这两种电路控制电路的主要功能是将输入电压Ui 的微小变化转变成脉冲宽度的变化即改变振荡脉冲方波的占空比或脉冲频率的变化从而实现调整输出电压的目的现分别介绍如下
1. 振荡器
振荡器又称振荡源基准频率发生器或脉冲发生器主要功能是产生一定振荡频率的方波或脉冲电路形式较多如多谐振荡器间歇振荡器双基极单结晶体管振荡器及集成电路与门电路组成的振荡器等在微型计算机和显示器中常用间歇振荡器如单机自激式变换器集成电路包括厚膜电路如UC3842 UC3843 UC3844 TDA4600TDA4601 TDA4605 TL494CN 等因为所举集成电路都具有脉宽调制的功能所以这里不单独介绍而是放到脉宽调制器一节讲述
2. 误差检测放大器
误差检测放大器又称比较放大器通常有单管放大器差分放大器带有光电耦合器的比较放大器集成稳压器组成的电路等单管放大器如图1.96 所示图中Q 为晶体三极管U0 为输出R3 R4 组成输出电压取样电路又称采样电路ZD 为稳压二极管提供基准电压图1.96 单管误差减测放大器当输出电压发生变动时通过取样电路将其微小变化送入放大器与基准电压进行比较经放大器放大后由集电极输出送给脉宽调制器该电路中三极管和稳压二极管都会受外界环境温度的影响这样将产生电压漂移但在显示器个别型号电源中仍被采用图1.97 是由三极管和光电耦合器组成的单管比较放大器实际电路图1.97 单管误差检测放大器实际电路该电路是多频显示器CTX CC-1435 电源误差检测放大器其中电阻R119 和二极管D110 D111 稳压管ZD102 组成基准电压源它提供7.6V 的基准电压三极管是一个放大器电阻R115 R116 R117 电位器VR101 组成取样电路对电源输出电压进行取样从基极送入三极管与基准电压比较经放大从集电极输出送给光电耦合器改变发光二 极管发光强度二极管发出光照射在内部的光敏三极管变成电信号由发射极送给脉宽调制器光电耦合器的另外一个作用是将电源输入端电网与电源输出端隔离图1.98 是AST 显示器中的一个实际电路图1.98 AST CM6P SVGA 彩显误差检测放大器图中TL431 是具有三个引出线的集成电路U901 是光电耦合器TL431 是精密稳压源在该电路中的功能相当一个基准电压源和一个比较放大器这里它作为一个误差放大器使用TL431 内部给出基准电压为2.75V 它与输出取样信号电压作比较当20V 电压发生变化时加在TL431 控制端R 其电压跟随相应变化阴极电压也作相应变化使4N35 发光二极管发出的光加强或变暗从而使4N35 输出电流变大或变小图1.99 是COMPAQ SM-491 误差检测放大器图1.99 COMPAQ SM-491 显示器误差检测放大器电路工作原理当电源输出电压发生变化时取样电压通过R967 与VR902 R968而得与基准电压2.75V 比较使TL431 阴极电流发生变化流过发光二极管而发光照在光敏三极管使其发射极电流发生变化并控制脉宽调制器通过变换器使输出电压保持稳定另外16.5V 通过电阻R969 R970 加到发光二极管正极两个电阻之间加一只12V稳压管当16.5V 电压发生波动时流过发光二极管的电流发生变化通过光敏三极管脉宽调制器变换器等电路保持电压稳定但是当16.5V 电压太高使稳压管击穿时光电耦合器不能工作而过压保护电路工作另外还有一种差分电路组成的误差检测放大器它有温度漂移小的优点它在多频显示器中得到广泛应用
3. 脉宽调制器PWM
脉宽调制器是控制电路中关键性部件脉宽调制器的功能是把误差检测放大器或称比较放大器输出的直流误差信号转换成脉冲宽度可变的脉冲方波信号要求它输出的脉冲宽度能在较大范围内连续线性地变化脉宽调制器电路比较多有最简单的三极管组成的脉宽调制器有单稳态触发器组成的脉宽调制器有RC 积分电路组成的脉宽调制器有运算放大器组成的脉宽调制器有集成电路组成的脉宽调制器等集成电路组成的脉宽调制器在显示器电源中得到了广泛的应用比如TDA4600 TDA4601 TDA4605 UC3842WPC394C NEISE5560 PC1394C 等其中UC3842 在近期生产的显示器基本上都采用该芯片UC3842 W1842 W2842 W3842 是单端隔离式电流型脉冲宽度调制器它采用双列直插式封装外接元件极少外围电路简单控制精度高工作稳定启动电流低输出电流大适于驱动场效应晶体管工作频率高可达500kHz 电路原理方块图和外形图如图1.100 所示图1.100 UC3842 电路原理框图及外形图1 UC3842 有如下优点电流方式工作电路稳定度高 线性调节良好 周期性限流作用保护性高工作可靠使用方便 当电源电压低于10V 时电路自动停振保护电路容易设计 可直接驱动场效应功率开关管 容易实现与行频同步使电源工作稳定
2 UC3842 各脚功能
Pin1 起频率补偿作用集成电路内部运算放大器输出的误差信号从1 脚输出经外围电路R,C 元件反馈到运算放大器负相输入端从而达到频率补偿作用Pin2 为误差信号输入端内接误差信号放大器负相端接收输出电压误差反馈信号,与芯片内部2.5V 基准电压进行比较放大送内部检测电流比较器从而改变UC3842输出脉冲宽度Pin3 为电流信号检测输入端电流信号从场效应管Q901 源极电阻R906 上的电压降取得经过电阻R910 加到检测电流比较器的正相端当源极电流超过某一数值时使芯片内部R-S 触发器清零翻转芯片停止输出场效应管停止工作这样起到了过流保护作用Pin4 锯齿波形成与芯片内部振荡器连接外接RC 定时电路RC 充放电时间常数决定了振荡频率的高低同时行逆程信号从4 脚加入使振荡频率被锁定为行频频率.保证了电源频率的稳定
Pin5 接地
Pin6 输出宽度可变的脉冲信号通过电阻R909 加到场效应管的控制栅极G
Pin7 接电源电压由开关变压器次级绕阻提供脉冲电压经整流滤波得到15V 电压,在开机时由300V 电压经电阻R902 降压大于16V 1mA 加到7 脚启动后只要维持在10V 16mA 以上即可工作当低于10V 时芯片停止振荡并锁住除非电压再上升到16V 才会重新启动芯片启动后16V 电压由变压器次级提供Pin8 提供5V 基准电压用VREF 表示经过电阻R912 加到4 脚对电容器C912充电产生锯齿波这样保证了振荡频率的稳定这里要指出不同生产家UC3842-7 脚电源电压是有差别的一股为14 15V 但8 脚参考电压是一致的均为5V
四保护电路
保护电路可分过压保护和过流保护两种在开关稳压电源工作过程中常因为某种原因使电源输出电压突然升高而有可能损坏负载元件对于串联式开关电源发生过压现象多数是由于功率开关管击穿短路造成的对于无工频变压器开关电源出现过压现象往往是由于控制电路发生故障而引起的所以过压保护电路是为了保护负载元件的在显示器中主要元件有行输出管和场输出管或场扫描集成电路等同样负载会因为某种原因发生过电流或负载短路现象过流保护电路是为保护电源的对于显示器主要的保护元件有功率开关管高频脉冲整流管等
1 过压保护电路
过压保护电路主要元件一般采用可控硅整流器尤其采用小电流的可控硅整流器其工作时间是相当快的一般在1_秒钟以内控制灵敏度也是相当高的一般在1mA 以下用可控硅整流器组成的过压保护电路比较简要组装和调试均较方便图1.101 是VOLTRON VGA 显示器行输出电源过压保护电路图中90V 为行输出电源电压可控硅整流器Q104 和电阻R123 R118 电容C125以及稳压管D110 组成过压保护电路8V 电压经降压后6.3V 作为显像管灯丝电压T101为电源开关变压器过压保护原理当开关电源由于失控而使输出电压升高时使稳压管D110 击穿经电阻R118 和R123 分压加在可控硅控制端G 上可控硅导通因为可控硅内阻很低压降很小约1V 左右使90V 电压降为零保护了行输出管而不被损坏无工频变压器开关电源特别是脉宽调制型的开关电源产生过压的可能性是不大的但是有些电源由于选用电路或元件不当还会发生过电压现象而损坏元件例GW-300 显示器它的电源是单管自激式脉宽频率混合调制其中有三个主要元件电容C327 C328C330 的容量大小和性能好坏对输出电压的稳定有很重要的作用曾多次发现因为该电容的容量变化或性能变坏而使输出电压从正常值113V 上升到127V?135V 而损坏场输出管D2344 严重时可能损坏行输出管因此在设计电源时还是应该考虑过压保护电路的下面举一个过压保护电路实例图1.102 是CTX-2 电源过压保护电路图1.102 CTX-2 显示器过压保护电路图中稳压管D13 D13A 可控硅Q5 MCR72 电阻R23 和电容C28 组成过压保护电路工作过程个稳压管稳压为119V 当行输出电压超过119V 时两个串联稳压管击穿使可控硅Q5 导通可控硅导通时两端电压很低约为1V 左右所以72V 电压下降到1V 并可听到可控硅嗒嗒声响电源不能工作从而保护了行输出管
,第十节 消隐和消亮点电路《第十节 消隐和消亮点电路》相关文章
- 第十节 消隐和消亮点电路
- › 第十节 消隐和消亮点电路
- 在百度中搜索相关文章:第十节 消隐和消亮点电路
- 在谷歌中搜索相关文章:第十节 消隐和消亮点电路
- 在soso中搜索相关文章:第十节 消隐和消亮点电路
- 在搜狗中搜索相关文章:第十节 消隐和消亮点电路
tag: 电视维修,液晶电视维修,长虹电视维修,康佳电视维修,维修资料 - 电视维修